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Abstract 

Background  When a machine learning model is developed and evaluated in a setting where the treatment assign-
ment process differs from the setting of intended model deployment, failure to account for this difference can lead 
to suboptimal model development and biased estimates of model performance.

Methods  We consider the setting where data from a randomized trial and an observational study emulating the trial 
are available for machine learning model development and evaluation. We provide two approaches for estimat-
ing the model and assessing model performance under a hypothetical treatment strategy in the target popula-
tion underlying the observational study. The first approach uses counterfactual predictions from the observational 
study only and relies on the assumption of conditional exchangeability between treated and untreated individuals 
(no unmeasured confounding). The second approach leverages the exchangeability between treatment groups 
in the trial (supported by study design) to “transport” estimates from the trial to the population underlying the obser-
vational study, relying on an additional assumption of conditional exchangeability between the populations underly-
ing the observational study and the randomized trial.

Results  We examine the assumptions underlying both approaches for fitting the model and estimating performance 
in the target population and provide estimators for both objectives. We then develop a joint estimation strategy 
that combines data from the trial and the observational study, and discuss benchmarking of the trial and observa-
tional results.

Conclusions  Both the observational and transportability analyses can be used to fit a model and estimate perfor-
mance under a counterfactual treatment strategy in the population underlying the observational data, but they rely 
on different assumptions. In either case, the assumptions are untestable, and deciding which method is more appro-
priate requires careful contextual consideration. If all assumptions hold, then combining the data from the observa-
tional study and the randomized trial can be used for more efficient estimation.

Keywords  Machine learning, Model evaluation, Transportability, Observational analysis, Counterfactual prediction

*Correspondence:
Sarah C. Voter
sarah_voter@brown.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41512-025-00201-y&domain=pdf


Page 2 of 11Voter et al. Diagnostic and Prognostic Research            (2025) 9:22 

Introduction
Users of machine learning models are often interested in 
adapting and/or evaluating the model in the target popu-
lation where the model derived predictions are intended 
to be used in. But machine learning models are often 
fit and/or evaluated on data that differs from the target 
population in terms of treatments used post baseline 
and/or the distribution of covariates. In such scenarios, 
fitting a model and evaluating model performance in 
the target population involves counterfactual questions 
under hypothetical scenarios, hereafter referred to as 
counterfactual predictions [1–5]. Compared to factual 
predictions that only depend on observed variables and 
do not involve hypothetical “what if ” questions, coun-
terfactual predictions are more challenging to evaluate 
and require stronger assumptions [5, 6]. With the rising 
use of machine learning models in healthcare settings, 
such “what-if” questions arise naturally in the context of 
patient risk prediction under possible treatment regimes. 
We consider the setting where the observational data-
base for which we would like to perform counterfactual 
prediction on, is accompanied by a randomized trial 
that shares the same eligibility criteria, treatment, out-
come measures and has an overlapping set of baseline 
covariates [7–9]. Randomized trials almost always enroll 
rather than randomly sample participants leading to a 
convenience sample that might not be representative of 
the desired target population [10–13]. However, obser-
vational databases such as electronic health records or 
medical claims are sometimes thought to be more repre-
sentative and provide “real world” data on diverse set of 
participants in routine clinical care [14–16]. The use of 
more representative datasources can help with address-
ing fairness concerns, a topic of increasing importance 
as machine learning models are deployed in a variety 
of settings [17]. The under-representation of marginal-
ized groups in clinical trials has been well documented 
[18–20]. This lack of diversity, given known differences in 
comorbidity profiles and treatment response within these 
populations can limit the predictive ability of machine 
learning models built using trial data [21, 22]. Thus, 
throughout we focus on drawing inferences about the 
population underlying the sample in the observational 
study (i.e., the target population).

Recently, several methods have been developed for 
counterfactual predictions and evaluation of model 
performance under hypothetical treatment strategies 
from observational data [3, 6, 23–25]. A key assump-
tion underpinning such analyses is the assumption of 
conditional exchangeability of treated and untreated 
participants within levels of baseline covariates. This 
assumption is not only untestable, but likely often 
violated in observational studies, particularly when 

treatment decisions are affected by variables that are dif-
ficult to measure. A potential remedy for this would be to 
incorporate information from a randomized controlled 
trial where the conditional exchangeability assump-
tion is supported by randomization of treatment assign-
ment. However, interpreting the analysis of randomized 
trial data in the context of the target population requires 
accounting for potential differences between the popu-
lations underlying the randomized trial and the target 
population [26, 27]. Such transportability analyses rely 
on the different assumption of exchangeability between 
the population underlying the randomized trial and the 
observational study conditional on baseline covariates. 
In this manuscript, we contrast the two approaches and 
discuss benchmarking of the results (i.e., comparisons of 
the estimates from the observational and transportabil-
ity analysis). We furthermore provide assumptions under 
which joint analysis of the two datasources is valid and 
derive estimators and properties of estimators for jointly 
analyzing the two data sources. We provide an illustra-
tion of the estimators and use them to estimate the per-
formance of a random forest model on the Coronary 
Artery Surgery Study (CASS) under hypothetical treat-
ment strategies.

Data structure and objectives
Suppose we have data from an observational study and 
a randomized trial. For both data sources, we have data 
on a fully observed (i.e., uncensored) outcome Y  , a binary 
treatment assignment A  (randomized in the trial but 
not in the observational study), and a baseline covariate 
vector X . We focus on the setting where there is com-
plete adherence to treatment assignment and no miss-
ing data. Denote participation in the randomized trial 
by S  (i.e., S = 1 for observations that are from the rand-
omized trial and S = 0 for observations that are from 
the observational study). Let n0 be the sample size of the 
observational study, n1 be the sample size of the rand-
omized trial, and n = n0 + n1 be the sample size in the 
combined dataset. We denote by Y a the potential outcome 
under the intervention to set treatment to A = a [28, 29].

Here, we assume a non-nested sampling design [30] 
where the data in the observational study and the rand-
omized trial are sampled separately from their underly-
ing super-populations with unknown and likely unequal 
sampling probabilities. Results for the nested design can 
be found in the Appendix. Although we model the data 
from the randomized trial as coming from some super-
population (that might be ill-defined), we do not assume 
that the sample is obtained through a formal sampling 
process. However, we assume that the data from the 
observational study is a representative sample from a 
population of clinical relevance.
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Our objective is to build a machine learning model 
for the conditional expectation of the potential out-
come under the treatment strategy that everyone 
receives treatment A = a where a ∈ {0, 1} in the target 
population and evaluate the performance of a model in 
the target population under this same treatment strat-
egy. In the Appendix, we present results for more gen-
eral treatment strategies.

Assumptions
Now we will present and discuss two different sets of 
identifiability assumptions. The first approach, which we 
refer to as the observational analysis, relies on the follow-
ing assumptions.

•	 A1: Consistency in the observational study. For all 
individuals i with Si = 0 , we have Y a

i = Yi if Ai = a.
•	 A2: Conditional exchangeability between treatment 

groups in the population underlying the observa-
tional study ( Y a ⊥⊥ A|X , S = 0).

•	 A3: Positivity of treatment assignment in the popula-
tion underlying the observational study. That is for 
a ∈ {0, 1} and for all covariate patterns that can occur 
in the population underlying the observational study, 
there is a non-zero probability of receiving treatment a.

The consistency assumption A1 implies: (i) no interfer-
ence (i.e.,  the potential outcomes of one participant are 
not influenced by other participants), (ii) variation in 
how the treatment is administered does not affect out-
comes [31] (i.e.,  no hidden versions of treatment), and 
(iii) study participation only affects outcomes through 
treatment assignment (i.e., there are no Hawthorne 
effects). The conditional exchangeability between treat-
ment groups assumption (A2) is often referred to as the 
“no unmeasured confounding” assumption, as it implies 
that there are no unmeasured variables that affect both 
treatment assignment and the outcome (which is sup-
ported by design when treatment is randomized, but is 
an untestable assumption in any observational analysis). 
The positivity of treatment assignment assumption says 
that all individuals should have a positive probability of 
receiving all treatments (which also holds by design in 
randomized trials).

Now, suppose that we suspect considerable violation of 
the conditional exchangeability assumption (A2) in the 
observational study, then an alternative is to “transport” 
results obtained from the randomized trial to the target 
population underlying the observational study. Identifi-
ability of the transportability approach relies on the fol-
lowing assumptions:

•	 A1*: Consistency in the randomized trial and the 
observational study. For all individuals i, we have 
Y a
i = Yi if Ai = a.

•	 A2*: Conditional exchangeability between treatment 
groups in the randomized trial ( Y a ⊥⊥ A|X , S = 1).

•	 A3*: Positivity of treatment assignment in the rand-
omized trial. That is for a ∈ {0, 1} and for all covariate 
patterns that can occur in the population underlying 
the randomized trial, there is a non-zero probability 
of receiving treatment a.

•	 A4*: Conditional exchangeability between popula-
tions underlying the randomized trial and the obser-
vational study ( Y a ⊥⊥ S|X).

•	 A5*: Positivity of being in the target population. For 
all covariate patterns that can occur in the population 
underlying the observational study, there is a non-
zero probability of the covariate pattern occurring in 
the randomized trial.

Assumptions A2* and A3* are supported by design 
in randomized trials. The conditional exchangeabil-
ity between population assumption (A4*) implies that 
the measured covariates X  are enough to account for 
between population differences. The positivity of being 
in the target population assumption (A5*) says that the 
randomized trial has at least as broad of a spectrum as 
the observational study, but it does allow the distribu-
tion of the covariates to be different between the rand-
omized trial and the observational study. This means that 
transportability analysis is not feasible in cases where the 
covariate distribution of the observational study spans 
regions of ineligibility for the randomized trial (unless 
the investigator willing to rely on untestable extrapola-
tion assumptions). The positivity assumptions A3* and 
A5* can be examined using the observed data, but assess-
ing their validity can be challenging [32].

Fitting a model for counterfactual predictions 
in the target population
Now we show how observational analysis and transporta-
bility analysis can be used to fit a machine learning model 
for the conditional expectation of the potential outcome 
mean under a counterfactual treatment strategy in the 
target population underlying the observational study. In 
other words, we derive results for identifiability of the 
estimand µa(X

∗) ≡ E[Ya|X∗, S = 0] and associated esti-
mation procedures. We refer to a model that has been 
built to estimate E[Ya|X∗, S = 0] as a tailored model. 
As µa(X

∗) depends on the unknown potential outcome 
Y a , it is not a function of the observed data. Here, X∗ is 
a subset of X  , the set of covariates required for condi-
tional exchangeable assumptions A2, A2* and A4*. For 
instance, many common clinical prediction tools used by 
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physicians are based on a small number of easy-to-obtain 
measurements ( X∗ ), but a more high dimensional covari-
ate vector might be required for assumptions A2 and A4* 
to hold (X).

Observational analysis
If assumptions A1 through A3 hold, we can write 
µa(X

∗) = E[E[Y|X, S = 0, A = a]|X∗, S = 0] . The appear-
ance of iterated expectations in the expression above 
suggests a two-step estimation strategy similar to the 
procedure described in [23]. The first step is to fit a 
model for Y   conditional on the full set of covariates 
X among the subset of participants in the observational 
study with treatment A = a . Next, as described by Boyer 
et al. [23], the second expectation can either be estimated 
non-parametrically when the number of covariates in X∗ 
is small, or in higher-dimensional cases, by regressing the 
predicted values from the first model on the subset of 
covariates X∗ among all participants in the observational 
database ( S = 0 ). In the Appendix, we provide an alter-
native inverse weighting identifiability expression and the 
associated inverse weighting estimator.

Transportability analysis
If assumptions A1* through A5* hold, then an alternative 
way to write µa(X

∗) is through the transportability iden-
tifiability result µa(X

∗) = E[E[Y|X, S = 1, A = a]|X∗, S = 0] . 
Similarly to the observational analysis this result suggests 
a two-step estimation strategy where in first step a model 
for Y  conditional on the full set of covariates X is fit using 
data from participants assigned to treatment A = a in 
the randomized trial and the second step can be imple-
mented as the second step for the observational analysis.

Joint analysis
If assumptions A1 through A3 and A1* through A5* hold, 
then E[Y |X , S = 1,A = a] = E[Y |X , S = 0,A = a] = E[Y |X ,A = a] , 
suggesting the following “joint analysis” identifiability 
result µa(X

∗) = E[E[Y|X,A = a]|X∗, S = 0] . This identi-
fiability result suggests fitting a model for E[Y|X,A = a] 
using the pooled data from the randomized trial and the 
observational database and then regressing the predic-
tions from that model on X∗ among participants in the 
observational database. In the Appendix, we provide an 
alternative inverse weighting expression and associated 
inverse weighting estimator.

Inference
For any of the estimators described above, at a fixed value 
of X∗ , standard error estimates are obtainable using resa-
mpling methods or the Huber-White sandwich estimator 
in the case of the two-step least-squares parametric esti-
mation procedure [33–35]. For uniform inference across 

a range of low dimensional X∗ values, one can obtain 
uniform confidence bands using the weighted bootstrap 
procedure detailed in [36]. For cases of high-dimensional 
X∗ , it may be difficult or computationally infeasible to 
construct a comprehensive grid capturing all relevant 
covariate patterns. In these cases, it may be useful to 
apply high-dimensional random sampling methods such 
as Latin Hypercube sampling [37], or to select a small 
subset of covariate patterns of clinical relevance.

Estimating performance of a machine learning 
model in the target population
Identifiability
Throughout this section we do not make the assump-
tion that the model is correctly specified or that the 
model is tailored to a particular treatment strategy. To 
emphasize this, we focus on estimating model perfor-
mance of an arbitrary model g(X∗) . Let L(Y a, g(X∗)) 
denote a generic loss function that compares the poten-
tial outcome Y a with the predicted value g(X∗) . Com-
mon examples include the mean squared error, Brier 
loss, and absolute loss. Our target parameter, the quan-
tity we want to estimate, is the expected loss (risk) in 
the target population (S = 0) under counterfactual 
treatment strategy A = a . That is, the target param-
eter is ψ(a) ≡ E[L(Ya, g(X∗)) | S = 0] . This depends on 
the potential outcome Y a which for each observation is 
unobserved and hence E[L(Ya, g(X∗)) | S = 0] is not a 
function of the observed data. If assumptions A1 through 
A3 hold, then the counterfactual risk in the target popu-
lation can be written as the observed data functional

A derivation of this result is provided in the Appendix 
(also shown in [23]).

If assumptions A1* through A5* hold, then the coun-
terfactual risk in the target population can be written as 
as the observed data functional

For completeness, a derivation of this result is provided 
in the Appendix (also shown in [26]). Note that expres-
sions (1) and (2) only rely on observed data (i.e., they do 
not involve counterfactual outcomes). Also, expression 
(2) only involves the distribution of the outcome condi-
tional on covariates and treatment assignment in the ran-
domized trial and the marginal covariate distribution in 
the observational database. Thus, it does not rely on out-
come or treatment information from the observational 
database, which can be a benefit when outcome infor-
mation is not available from the observational data or is 

(1)
ψobs(a) = E[E[L(Y , g(X∗))|X , S = 0,A = a]|S = 0].

(2)
ψtr(a) = E[E[L(Y , g(X∗))|X , S = 1,A = a]|S = 0].
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unusable (e.g.,  due to few events or gross measurement 
error).

Estimation
The identifiability results for the observational and trans-
portability analysis suggest two estimators that are con-
structed as sample analogs of expressions (1) and (2). For 
the observational analysis this can be done using the follow-
ing steps: (i) estimate E[L(Y, g(X∗))|X, S = 0, A = a] using 
the data from the observational study, (ii) use this estima-
tor to create predictions for E[L(Y, g(X∗))|X, S = 0, A = a] 
for each covariate pattern (X) observed in the observa-
tional study, and (iii) average these predictions to get the 
estimator from the observational analysis. Mathemati-
cally, the estimator from the observational analysis is 
expressed as ψobs(a) =

1
n0

n
i=1 I(Si = 0)ha,0(Xi) , where 

ĥa,s(X) is an estimator for E[L(Y, g(X∗))|X, S = s, A = a] . 
Such estimators are often referred to as outcome model 
estimators [23, 27] to reflect that they fit a model for the 
conditional distribution of the outcome they wish to esti-
mate ( ̂ha,s(X) ). Similarly for the transportability analysis, 
the outcome model estimator is obtained by (i) estimate 
E[L(Y, g(X∗))|X, S = 1, A = a] using the data from the 
randomized trial, (ii) use the estimator to create predic-
tions for E[L(Y, g(X∗))|X, S = 1, A = a] for each covari-
ate vector (X) in the observational study, and (iii) average 
these predictions to get the estimator from the transport-
ability analysis. Mathematically, the estimator is expressed 
as ψ̂tr(a) =

1
n0

∑n
i=1 I(Si = 0)ĥa,1(Xi).

Note that for both the observational and transportabil-
ity analyses, our general procedure is to obtain a coun-
terfactual treatment-specific outcome model (step (i)), 
which is then used to obtain predictions in the obser-
vational study (steps (ii) and (iii)). In both cases, steps 
(ii) and (iii) are performed on the observational data 
because our target parameter, the counterfactual treat-
ment model performance, is defined with regard to the 
population underlying the observational study. The dif-
ference between the two methods lies in that the obser-
vational analysis estimates the outcome model using the 
observational data and the transportability analysis uses 
the randomized trial data. In the Appendix, we present 
alternative doubly robust estimators for both the obser-
vational and the transportability analysis that are more 
robust to the modeling assumptions made.

Illustrative example
Now we illustrate the concepts using a simple simula-
tion with the outcome model estimators. We simulate 
a continuous outcome Y  , binary treatment A , and one-
dimensional continuous covariate vectors X  (measured) 

and U (unmeasured). The data-generating mechanism is 
structured such that we can selectively violate the con-
ditional exchangeability assumptions A2, and/or A4* (all 
other assumptions are satisfied in this simulation set-
ting). In this example, we focus on counterfactual pre-
diction under treatment a = 1 using the mean squared 
error (MSE) as the measure of model performance. In the 
Appendix we present more details on how the data was 
simulated.

To selectively violate assumption A2 without violat-
ing assumption A4*, we simulate U  as an unmeasured 
confounder that affects the potential outcome Y 1 in 
both the randomized trial and the observational study, 
but U affects treatment assignment A only in the obser-
vational study. We make Y 1 depend on U by setting the 
parameter µYU > 0 and we make A depend on U by set-
ting the parameter βAU > 0 . Thus, in our setup µYU > 0 
and βAU > 0 imply that the estimator from the observa-
tional analysis is biased. To violate assumption A4* we 
make the MSE of Y 1 depend U  only in the population 
underlying the observational study through the param-
eter σYU ( σYU > 0 implies violations of assumption A4*). 
Figures 1 and 2 illustrate and present, respectively, results 
from four different cases that differ in what assumptions 
are violated.

Case 1: Both estimators are unbiased 
(βAU = µYU = σYU = 0). An example of such a dataset 
is shown in Fig. 1a and the figure shows that within lev-
els of X  the variability in Y 1 is the same in both popu-
lations (assumption A4* holds). Figure  1a also shows 
that in the observational study treatment assignme A  is 
not predictive of the potential outcome Y 1 within levels 
of X  (assumption A2 holds). Figure  1 in the Appendix 
shows the relationship between Y 1 and the unmeasured 
covariate U  for the four cases considered in the main 
text. The simulation results, averaged across 500 simu-
lations, under these conditions corresponds to a point 
close to the origin of the plot in Fig. 2, showing that both 
estimators are unbiased.

Case 2: Transportability estimator biased and observa-
tional estimator unbiased (σYU > 0; βAU = µYU = 0). 
Figure  1b shows a simulated dataset from this setting. 
Her, X  alone is not sufficient to adjust for differences 
between the populations underlying the randomized 
trial and the observational study, as the unmeasured 
covariate introduces variability in Y 1 within levels 
of X  in a way that the variability is much larger in the 
observational study than in the randomized trial. This 
leads to the estimator from the transportability analysis 
underestimating the MSE in the population underly-
ing the observational study. But as condition A2 holds, 



Page 6 of 11Voter et al. Diagnostic and Prognostic Research            (2025) 9:22 

the estimator from the observational analysis is unbi-
ased. As expected, the points for which σYU is the only 
non-zero parameter appear in the upper-left quadrant 
of Fig.  2, corresponding to the observational estimator 
being unbiased and the transportability estimator hav-
ing a negative bias that increases as σYU increases.

Case 3: Transportability estimator unbiased and obser-
vational estimator biased (βAU ,µYU > 0; σYU = 0). In 
this case, the assumption of conditional exchangeability 
between populations (A4*) holds. But conditional exchange-
ability between treatment groups in the observational study 
is violated (A2) as in the observational study, even condi-
tional on X , treatment assignment A is informative about 
the potential outcome Y 1 (i.e., observations with A = 1 gen-
erally have lower values of Y 1 than observations with A = 0 
with the same X value). This results in bias of the observa-
tional estimator (in the Appendix, we provide further details 
on how it is violated). The results in Fig. 2 show that when 
βAU ,µYU > 0 and σYU = 0 then the transportability esti-
mator is unbiased and the observational estimator is biased.

Case 4: Both estimators biased (σYU ,βAUµYU > 0). In 
this scenario, both A2 and A4* are violated by making 
all three parameters non-zero. This leads to bias in both 

estimators, and the corresponding points in Fig. 2 appear 
in the lower lefthand quadrant.

Benchmarking and joint analysis
Following [38], we define benchmarking as comparing the 
results from the analysis of the randomized trial and the 
observational study. Successful benchmarking (i.e.,  con-
cordant results from the observational and transportabil-
ity analysis) likely increase the trust in the analysis, but it 
does not guarantee validity as some assumptions (most 
likely either A2 and A4*) could be violated in a way such 
that the observational and the transportability estimators 
are both biased with a bias of similar magnitude and in 
the same direction.

Observational databases are often substantially larger 
than randomized trials allowing for more fine grained 
analysis than is possible with smaller datasets (e.g., sub-
set analysis or analysis of rare outcomes). Thus, success-
ful benchmarking could be used to support analysis of 
observational data that is infeasible using data from the 
randomized trial. If benchmarking is not successful, then 
it suggests that at least one assumption is not satisfied 
(likely one or both of A2 or A4*) but it cannot be inferred 
from the data which assumption is violated [38].

Fig. 1  Visual examples of data representing each of the four cases described in this illustration. Each plot shows scatterplots of the counterfactual 
outcome Y1 vs. the observed covariate X  . The density of Y 1 by treatment group is shown on the right of each plot and the density of X  by treatment 
group is shown above each plot
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One way to determine whether the observational estima-
tor and transportability estimator are concordant is to con-
struct confidence intervals of their difference (e.g.,  using 
the non-parametric bootstrap). Such determination should 
also involve subject matter knowledge including the clinical 
significance of the magnitude of the differences between 
the two point estimates. If the observational estimator 
and transportability estimator are concordant and subject 
matter knowledge does not suggest violations of any of 
the identifiability assumptions, then a natural question is 
whether and how the data from the randomized trial and 
the observational study can be combined for more effi-
cient estimation of the counterfactual risk in the target 
population[38–40].

One approach for joint analysis is to use some weighted 
combination of ψ̂tr , and ψ̂obs (e.g,  using equal weights, 
weights proportional to the sample size, and the inverse 
of the estimator specific variance). An alternative 
approach is based on the observation that if assumptions 
A1 through A3 and A1* through A5* hold, then

The equalities in expression (3) only rely on observed 
data distributions and are therefore testable using the 
observed data [41], but when X  is high dimensional 
conducting such tests can be challenging.

Using Eq. (3) we can write the counterfactual risk in the target 
population as ψjoint(a) = E[E[L(Y, g(X∗))|X,A = a]|S = 0] 
and the corresponding estimator that combines data from 
both datasets is ψ̂joint =

1
n0

∑n
i=1 I(Si = 0)ĥa(Xi). Here, 

ĥa(X) is an estimator for E[L(Y, g(X∗))|X,A = a] estimated 
using the combined data from the randomized trial and the 
observational study. In the Appendix, we derive a doubly 
robust estimator for the counterfactual risk in the target popu-
lation that combines data from the randomized trial and the 
observational study.

If all identifiability assumptions hold and with 
appropriately chosen estimators for the nuisance 
functions needed for their implementation, then the 

(3)

E[L(Y, g(X∗))|X,S = 1,A = a] = E[L(Y, g(X∗))|X,

S = 0,A = a] = E[L(Y, g(X∗))|X,A = a].

Fig. 2  Relative bias of the observational estimate ψ̂obs(1) plotted against the bias of the transportability estimate ψ̂tr(1) when estimating 
the counterfactual mean in the population underlying the observational study if everyone was assigned to treatment A = 1 . If βAU > 0 
and µYU > 0 , then assumption A2 is violated and we expect the estimator from the observational analysis ψ̂obs(1) to be biased. If σYU > 0 , then 
assumption A4* is violated and we expect the estimator from the transportability analysis ψ̂tr(1) to be biased
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estimators obtained from an observational analysis, 
transportability analysis, and the joint analysis are 
unbiased and asymptotically normal. Hence, compar-
ing the asymptotic variance of the three estimators is 
a natural thing to consider when choosing between 
them. The joint analysis relies on more assumptions 
that allows the estimator to use more data than both 
the estimators from the observational and the trans-
portability analysis. Hence, we expect the joint analy-
sis to be more efficient than the other two approaches. 
In the Appendix, we formalize that intuition in the 
context of doubly robust estimators, where we show 
that the asymptotic variance of the estimator from the 
joint analysis is smaller than or equal to the asymp-
totic variance of both the estimators from the obser-
vational and the transportability analysis. In the 
Appendix, we show results from simulations com-
paring variance and bias of the three estimators for 
varying sample sizes and varying ratios of the sample 
size of the randomized trial and the sample size of the 
observational database. The results show that the var-
iance of the joint analysis is always lower (or at least 
not larger) than the variance of the observational and 
transportability estimators.

Application to CASS data
Data and implementation: We applied our methods to 
data from the Coronary Artery Surgery Study (CASS), a 
comprehensive cohort study that enrolled participants 
from 1975 to 1979 with end of follow-up in 1996. CASS 
compared the effects of coronary artery bypass grafting 
surgery plus medical therapy (hereafter surgery) versus 
only medical therapy among patients with significant 
coronary artery disease with a reduced ejection fraction 
[42, 43]. In CASS, participants could select to be a part 
of a randomized trial ( S = 1 ) and if they declined they 
were offered to participate in an observational study 
( S = 0 ). As there was no censoring and previous analy-
sis of the same data showed minimal impact of adjust-
ing for missing data [44], we conducted a complete case 
analysis consisting of 1,686 participants and participant 
baseline characteristics stratified by study component 
(randomized or observational) and treatment assign-
ment are shown in Table 1 (in this analysis X = X∗ and 
the covariates X are listed in Table 1). Here, we present 
results from a random forest model fit on a training 
set comprising 50% of the source population observa-
tions, with 10-year mortality as the outcome. Using the 
remaining 50% of the observations in the observational 

Table 1  Baseline characteristics of CASS participants, stratified by study component (observational or randomized) and treatment 
assignment. For continuous variables we present mean (standard deviation) and for categorical we present number in each category 
(percent). Here, S = 1 denotes participants who were in the randomized component of CASS, S = 0 denotes participant in the 
observational component of CASS, A = 1 denotes the surgery arm and A = 0 denotes the medical intervention arm
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study and all the randomized trial data, we calculated the 
Brier score for the random forest model in the popula-
tion underlying the observational component for coun-
terfactual deterministic treatment strategies of A = 1 
and A = 0 . We did that estimation using transportability, 
observational, and joint analysis using outcome model, 
inverse weighting, and doubly robust estimators. The 
models needed for implementation of the estimators 
were main effect logistic regression models.

Results:  Risk estimates and 95% bootstrap-based 
confidence intervals are shown in Fig.  3. For counter-
factual treatment assignment A = 1 , all estimates are 
similar and the associated confidence intervals are highly 
overlapping. From a benchmarking perspective, this 
increases our confidence that the identifiability assump-
tions are satisfied. Furthermore, the joint analysis esti-
mates have narrower confidence intervals than both 
the observational and transportability estimates. For 
treatment  A = 0 , while there is still substantial overlap 
between the confidence intervals, we see a minor dis-
cordance between the observational and transportability 
analysis estimates, suggesting a potential mild violation 
of at least one of assumptions A2 or A4*. For example, 
prior aortic or peripheral intervention has been identi-
fied as an important predictor for long term mortality 
in patients with coronary artery disease [45] and that 
information was not collected in CASS which might lead 
to assumption violations. In the Appendix, we provide 
results from (i) the same analysis for tailored models and 

the trends seen are similar to those seen in Fig. 3 and (ii) 
results that include analysis that uses only data from the 
randomized component of CASS.

Discussion
In this manuscript we discuss three ways, observational 
analysis, transportability analysis, and joint analysis to 
estimate the counterfactual risk in the target population 
underlying an observational study when we have data 
from a randomized trial and an observational study emu-
lating the randomized trial. We also outline procedures 
for fitting a machine learning model that is tailored to 
the conditional counterfactual mean in the population 
underlying the observational study. We compare the 
assumptions needed for these approaches and provide 
and derive properties of estimators for joint analysis of 
the two datasets. One advantage of our approach is that 
the methods we have outlined are agnostic to the under-
lying structure of the machine learning model and it can 
also be used with traditional statistical models.

While discussed here in the context of a randomized 
trial and an observational study, the transportability 
analysis can be used more generally in  situations when 
it is necessary to simultaneously adjust for differences in 
treatment strategies and covariate distributions between 
the two populations. For example, the transportability 
analysis can used when both datasets are observational 
studies, given that we have reason to believe A1* through 
A5*  hold. However, in this case, one may have lower 

Fig. 3  Estimates and 95% confidence intervals of Brier risk in the population underlying the observational component of CASS for counterfactual 
treatments A = 1 (top) and A = 0 (bottom). Estimates are presented for the transportability, observational, and joint analysis. For each analysis, we 
present estimates calculated using the outcome model, inverse-probability-weighting (IPW) and doubly-robust estimators. 95% Wald confidence 
intervals were obtained using the non-parametric bootstrap with 500 bootstrap samples
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confidence in assump A2*  (conditional exchangeability 
between treatment groups), since we can no longer rely 
on randomization in the trial.

As discussed, both the observational and transport-
ability analysis rely on untestable assumptions and ideally 
subject matter knowledge should be used to determine the 
plausibility of each untestable assumption. However, when 
subject matter knowledge is insufficient to make that deter-
mination, sensitivity analysis methods that evaluate how 
violations of each assumption impact the findings are use-
ful and development of such methods is of interest. There 
are several other interesting avenues for future research 
including extensions to censoring, measurement error, 
non-adherence to treatment assignment, and methods that 
do not require individual participant data. In highly related 
transportability analysis settings, it has been shown that 
correctly specified maximum likelihood estimators (MLEs) 
without using any data from the target population are mini-
max optimal in the target population (under some identifi-
ability assumptions and when X = X∗ ) but for misspecified 
MLE models inverse-odds weighted MLEs improve over 
unweighted MLEs. It is of interest to provide similar results 
for the setting considered here [46, 47].

When evaluating the model, we assume that the 
machine learning model is built using data that is inde-
pendent from the data used for evaluation of model per-
formance. That assumption incorporates several common 
settings such as models that are built on an external data-
set, a split into a training and a test set, and evaluating 
the performance of an externally developed biomarker. In 
our setup we assumed that the set of covariates used to 
adjust for confounding or between population differences 
(X) can be larger than the set of covariates needed for the 
machine learning model ( X∗ ). This is useful as the vari-
ables to include in the machine learning model are often 
selected with clinical constraints on data availability 
across a variety of settings in mind (e.g., avoiding covari-
ates that are expensive or invasive to collect). Although 
not explicit in our notation, the set of covariates available 
in the observational study might be larger than the set 
of covariates used in the randomized trial. If that is the 
case, then the observational analysis can adjust for more 
factors than the transportability analysis as the latter is 
restricted to adjusting for variables that are available in 
both datasets.

Finally, we note that the required assumptions for any 
of the procedures outlined here are untestable. However, 
the benchmarking procedure we describe can help iden-
tify discrepancies between the observational and trans-
portability analyses that may point to certain assumption 
violations, or in the case where both analyses return simi-
lar results, it can increase our confidence in the assump-
tions and analysis.
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